CHROM. 16,684

CHARACTERIZATION AND SELECTION OF STATIONARY PHASES FOR GAS-LIQUID CHROMATOGRAPHY BY PATTERN RECOGNITION METHODS*

J. F. K. HUBER* and G. REICH

Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090 Vienna (Austria) (First received December 30th, 1983; revised manuscript received February 22nd, 1984)

SUMMARY

The classification of stationary phases in gas-liquid chromatography and the quantitation of their retention characteristics, which is generally described as 'polarity', were investigated by pattern recognition methods, especially by the hierarchical clustering and the minimum spanning tree techniques. It is demonstrated that the hierarchical clustering with a distant function and the minimum spanning tree method gives similar results with respect to the ranking and the differentiation of liquid stationary phases. New measures of the retention characteristics of liquid stationary phases were defined and tested. The potential of the various measures of solvent polarity is discussed. The mean retention index was found to be the best polarity characteristic. With a view to the rationalization of experimental work, an optimized procedure for the classification of liquid stationary phases and the calculation of their polarity with the minimum number of characteristic test solutes was elaborated. The set of characteristic solutes selected gives the best representation of the total number of solutes and covers all types of molecular interactions included in the term polarity.

INTRODUCTION

A nearly unlimited number of liquid stationary phases are available in gas chromatography if one considers that mixtures of stationary liquids can also be used. A classification of stationary phases and a drastic reduction in their number to a standard set are highly desirable in the interests of rationalization. The experimental choice of a single or several stationary phases for the separation of a given mixture by gas-liquid chromatography (GLC) should be confined to a search in the smallest possible number of solvents. In the identification of solutes by means of multi-dimensional GLC retention data, only stationary phases that make a significant contribution to the information content of the data should be applied. In order to achieve

^{*} Presented in part at the Fourteenth International Symposium on Advances in Chromatography, Lausanne, September 24-28th, 1979.

this objective, the number of liquid stationary phases should be reduced to those solvents which have significantly dissimilar retention characteristics. The systematic reduction of the number of stationary liquids requires their ranking in order of their effect on the retention pattern.

Several attempts to achieve this aim have been made. The first to try to characterize and classify stationary liquids for GLC was Rohrschneider^{1,2} and his approach was refined and extended by McReynolds³. A few research groups have tried to quantify the similarity of stationary phases by means of pattern recognition methods. Leary and co-workers^{4,5} calculated the Euclidian distances between phases and ranked them according to these values. Groups of phases are defined by their nearness and one member of each group is selected as representative of this group. This technique was also used by Haken et al.⁶. Massart and co-workers⁷⁻¹⁰ used numerical taxonomy methods (cluster analysis and unsupervised learning methods are alternative names for this approach) to cluster the phases with a hierarchical cluster algorithm based on the correlation coefficient. Numerical taxonomy was also used by De Beer and Heyndrickx¹¹ to order the stationary phases with a selected set of solutes. Wold and co-workers^{12,13} have used methods of principal components analysis (SIMCA) to calculate similarities between phases. Similar work was carried out by McCloskey and Hawkes¹⁴. Lowry et al.¹⁵ used eigenvector projections to inspect the data set visually for spatial distribution in the pattern space. The data set used in all these papers, except refs. 9 and 11, was taken from McReynolds³. Factor analysis was used by Weiner and Parcher¹⁶ and Dahlmann et al.¹⁷ for the selection of preferred stationary phases. Haken and Srisukh¹⁸ suggested a method for classifying stationary phases without the use of a reference stationary phase.

The aim of this work was to select the optimal pattern recognition method for the classification and selection of stationary phases in GLC. Two procedures, the hierarchical clustering method and the minimum spanning tree method, are included in the final evaluation. The criteria for selection of 'standard stationary phases' for GLC will be defined and a method for the selection of a limited number of test solutes will be developed. In all operations involved, only the retention value of the data base are used and no assumptions about the chemical structures of solutes or solvents are made. Several concepts for the characterization of solvent polarity by a single number are compared for the characterization of stationary phases in GLC. The polarity number suggested by McReynolds will be verified by a purely mathematical approach. A new concept, the mean retention index, will be shown to give equivalent results. Unfortunately, the data set used¹⁹ on the one hand is based on a large number of obsolete stationary phases and on the other does not consider representatives of important types of compounds. It is, however, the only published data set that is sufficiently large and complete and other published data sets do not represent a complete data matrix without missing values. In order to obtain the full benefit of the proposed methods it would be necessary to create a new data base of relevant retention data. This point has also been stressed elsewhere²⁰.

EXPERIMENTAL

The calculations were carried out on a large computer (Control Data Cyber 170-720) with a main memory of 131K words of 60 bits and disk and tape storage.

The data and program input was performed by a remote process computer (PDP-15; Digital Equipment, Maynard, U.S.A.) with a core memory of 16K words of 18 bits, a dual magnetic tape drive (DEC-tape TU-56, DEC) and a line printer (Model 2200, Tally, Kent, U.S.A.). Both computers were connected by a dial-up telephone line via a modem (Model 300; Racal-Milgo, Reading, U.K.). Job editing, data entry and communication were performed on the PDP-15. The data bank was created and maintained on the Cyber. The main operating tool was ARTHUR, a program system for complex multi-dimensional data analysis by pattern recognition methods²¹.

The data set used for the calculations was selected from a compilation given in the literature¹⁹ containing relative retention values and retention indices of 367 solutes on 77 stationary phases at two temperatures. The greatest complete data matrix is formed by the retention data of 158 solutes on 75 stationary phases at 120°C. This set of data was obtained by exclusion of all solutes and stationary phases with missing values. The stationary phases of the selected data set are listed in Table I and the solutes in Table II.

RESULTS AND DISCUSSION

Classification procedure

In chromatography a solute is characterized by its retention values on n stationary phases, which means it represents a point in an *n*-dimensional space. The coordinates of this point form a so-called pattern vector X_i , which is defined by

$$X_i = x_{i1}, x_{i2}, \dots, x_{in}$$
(1)

where the components x_{ip} are the retention indices of the solutes, *i*, on the stationary phases, p = 1, 2, ..., n.

The stationary phases can also be characterized in this manner. A number of chemically different test solutes are used to characterize the retention characteristics of the stationary phase by the pattern vector X_p , which is defined by

$$X_p = x_{1p}, x_{2p}, \dots, x_{kp}$$
(2)

where the components x_{ip} are the retention indices of the solutes, i = 1, 2, ..., k, on the stationary phase, p.

The stationary phases can be classified with respect to their retention characteristics by means of cluster analysis, a pattern recognition method. In this procedure the clustering of points in the k-dimensional space is investigated.

The algorithm of hierarchical clustering can be used for the classification of stationary liquids in GLC. The result of the classification by cluster analysis depends on the definition of the similarity measure. Two different similarity measures, the Euclidian distance and the correlation coefficient, were used. They are defined for the two solvents, p and r, as follows:

Euclidian distance:

$$d_{pr} = \sqrt{\sum_{i=1}^{k} (x_{ip} - x_{ir})^2}$$
(3)

TABLE I

LIST OF STATIONARY PHASES

No.	Name	No.	Name
1	Apiezon J	39	Neopentyl glycol succinate
2	Apiezon L	40	Oronite NIW
3	Apiezon M	41	Pluronic F68
4	Apiezon N	42	Pluronic F77
5	Bis(2-ethoxyethyl) phthalate	43	Pluronic F88
6	Carbowax 300	44	Pluronic L42
7	Carbowax 400	45	Pluronic L44
8	Carbowax 600	46	Pluronic L61
9	Carbowax 1000	47	Pluronic L63
10	Carbowax 1540	48	Pluronic L72
11	Carbowax 4000	49	Pluronic L81
12	Carbowax 6000	50	Pluronic P46
13	Carbowax 20M	51	Pluronic P65
14	Castorwax	52	Pluronic P84
15	Dibutyl tetrachlorophthalate	53	Pluronic P85
16	Diethylene glycol adipate	54	Polyphenyl ether, 5 rings
17	Diethylene glycol sebacate	55	Polyphenyl ether, 6 rings
18	Diethylene glycol succinate	56	Poly-tergent J-300
19	Di-2-ethylhexyl adipate	57	Quadrol
20	Di-2-ethylhexyl sebacate	58	SE-30
21	Diglycerol	59	SE-30 polyester NPGA terminated
22	Diisodecyl phthalate	60	SE-31
23	Dioctyl phthalate	61	SE-52
24	Dioctyl sebacate	62	Sorbitol
25	Dow Corning 550 fluid	63	Squalane
26	Dow Corning FS 1265 fluid	64	Sucrose acetate isobutyrate
27	Ethofat 60-25	65	Sucrose octaacetate
28	Ethylene glycol adipate	66	Tergitol NPX
29	Ethylene glycol sebacate	67	TMP tripelargonate
30	Flexol 8N8	68	Tricresyl phosphate
31	Hallcomid M18	69	Triethylene glycol succinate
32	Hallcomid M18 OL	70	Triton X-305
33	Hyprose SP 80	71	UCON LB-1715
34	Igepal CO 880	72	UCON 50 HB-2000
35	Isooctvl decvl adipate	73	Versilub F-50
36	Kroniflex THFP	74	XF 1150
37	Neopentyl glycol adipate	75	Zonyl E-7
38	Neopentyl glycol adipate terminated		·

Correlation coefficient:

$$r_{pr} = \frac{\sum_{i=1}^{k} (x_{ip} - \bar{x}_p) (x_{ir} - \bar{x}_r)}{\sqrt{\sum_{i=1}^{k} (x_{ip} - \bar{x}_p)^2 (x_{ir} - x_r)^2}}$$

(4)

TABLE II

LIST OF SOLUTES

No.	Name	No.	Name
1	Methanol	51	Isovaleraldehyde
2	Ethanol	52	2,2-Dimethylpropionaldehyde
3	Propanol	53	Hexanal
4	Isopropanol	54	Heptanal
5	Butanol	55	2-Ethylhexanal
6	Isobutanol	56	Acrolein
7	secButanol	57	Metacrolein
8	tertButanol	58	Crotonaldehyde
9	Pentanol	59	2-Ethyl-2-butenal
10	Isopentanol	60	2-Ethyl-2-hexenal
11	2-Pentanol	61	Acetone
12	3-Pentanol	62	2-Butanone
13	2- Methyl-1-butanol	63	2-Pentanone
14	2-Methyl-2-butanol	64	3-Pentanone
15	3-Methyl-2-butanol	65	3-Hexanone
16	2,2-Dimethyl-1-propanol	66	3-Methyl-2-pentanone
17	Hexanol	67	4-Methyl-2-pentanone
18	2-Hexanol	68	3,3-Dimethyl-2-butanone
19	3-Hexanol	69	2-Heptanone
20	2-Methyl-1-pentanol	70	3-Heptanone
21	4-Methyl-1-pentanol	71	2-Octanone
22	2-Methyl-2-pentanol	72	Cyclopentanone
23	3-Methyl-2-pentanol	73	Cyclohexanone
24	4-Methyl-2-pentanol	74	3-Buten-2-one
25	2-Methyl-3-pentanol	75	5-Hexen-2-one
26	3-Methyl-3-pentanol	76	4-Methyl-3-penten-2-one
27	2-Ethyl-1-butanol	77	2,3-Butanedione
28	2,2-Dimethyl-1-butanol	78	2,4-Pentanedione
29	2,3-Dimethyl-2-butanol	79	Ethyl formate
30	3,3-Dimethyl-2-butanol	80	Propyl formate
31	3-Heptanol	81	Isopropyl formate
32	4-Heptanol	82	Isobutyl formate
33	2,2-Dimethyl-1-pentanol	83	secButyl formate
34	2,4-Dimethyl-3-pentanol	84	Pentyl formate
35	2-Octanol	85	2-Pentyl formate
36	2-Ethyl-1-hexanol	80	3-Pentyl formate
37	Cyclopentanol	87	Hexyl formate
38	Cyclohexanol	88	Methyl acetate
39	2-Propen-1-ol	89	Etnyl acetate
40	2-Propyn-1-ol	90	Propyl acetate
41	2-Buten-1-ol	91	Isopropyl acetate
42	3-Buten-2-ol	92	Butyl acetate
43	2-Methyl-2-propen-1-ol	93	Isobulyi acetate
44	1-Penten-3-ol	94	secbutyl acetate
45	I-renten-4-01	95	2 Bontul acetate
46	Acetaldehyde	96	2-renty acetate
4/	Propionaldenyde Deternetidehyde	9/ 00	J-1 Chilyl acciaic 2. Mathyl_2_butyl acctate
48	Butyraidenyde	78	Z-mully-z-buyi acciate
49 50	Isobulyraidenyde Valaraldahyda	79 100	A.Methyl_2_nentyl acetate
50	valeraldenyde	100	-mony-2-pontyr acetate

(Continued on p. 20)

	, , , , , , , , , , , , , , , , , , ,			_
No.	Name	No.	Name	
101	2-Ethyl-1-butyl acetate	130	1,4-Butylene glycol formal	
102	Heptyl acetate	131	Ethylene glycol acetal	
103	Cyclohexyl acetate	132	1,3-Butylene glycol acetal	
104	Allyl acetate	133	Diethyl propylal	
105	Ethylene diacetate	134	Acrolein diethyl acetal	
106	Methyl propionate	135	Pentyl ether	
107	Propyl propionate	136	Tetrahydrofuran	
108	Butyl propionate	137	2-Methyl-1,2-propylene oxide	
109	Pentyl propionate	138	2-Methyltetrahydrofuran	
110	Methyl butyrate	139	2-Methylfuran	
111	Ethyl butyrate	140	2,5-Dimethyltetrahydrofuran	
112	Isopropyl butyrate	141	Benzene	
113	Butyl butyrate	142	Toluene	
114	Pentyl butyrate	143	o-Xylene	
115	Vinyl butyrate	144	<i>m</i> -Xylene	
116	Butyl isobutyrate	145	<i>p</i> -Xylene	
117	Isobutyl isobutyrate	146	Ethylbenzene	
118	Methyl acrylate	147	o-Diethylbenzene	
119	Ethyl acrylate	148	m-Diethylbenzene	
120	Propyl acrylate	149	p-Diethylbenzene	
121	Diethyl formal	150	Ethylene chloride	
122	Isopropyl ethyl formal	151	Carbon tetrachloride	
123	secButyl ethyl formal	152	Chloroform	
124	Dibutyl formal	153	2-Chloroethanol	
125	Ethylene glycol formal	154	3-Hydroxy-2-butanone	
126	1,2-Propylene glycol formal	155	Dimethoxymethylal	
127	1,3-Propylene glycol formal	156	1,4-Dioxane	
128	1,3-Butylene glycol formal	157	Trioxane	
129	2,3-Butylene glycol formal	158	1,3,5-Trioxepane	
	· •·			

TABLE II (continued)

Both measures are used in the unweighted pair mode clustering algorithm.

The dendrogram of the unweighted pair mode clustering with the Euclidian distance as a similarity measure is shown in Fig. 1. The distance is used in the normalized form, s_{nr} , which is defined by

$$s_{pr} = 1 - d_{pr}/d_{pr} \max$$
⁽⁵⁾

where d_{pr} is the Euclidian distance from the pattern vector X_p to the pattern vector X_r and $d_{pr \max}$ is the maximum distance of two pattern vectors in the data set. This definition has the consequence that the similarity measure takes values between 0 (pattern with maximum distance) and 1 (two patterns at the same position). Two patterns are assumed to be most similar if their similarity value is larger than the values for any other pair of patterns. The dendrogram in Fig. 2 shows the result of the unweighted pair mode clustering with the correlation coefficients as the similarity measure. The assignment of the stationary phases to clusters can be done by splitting the dendrograms according to given similarity levels. The combining lines, which are cut by the chosen similarity level, delimit the clusters. The cluster numbers assigned to different stationary phases are shown in Table III. It can be seen that the clusters

Fig. 1. Result of hierarchical clustering using the normalized Euclidian distance as a similarity measure.

Fig. 2. Result of hierarchical clustering using the correlation coefficient as a similarity measure.

formed are identical for both similarity measures and there are only differences in the similarity levels.

Another method of cluster analysis that can be used is the minimum spanning tree method. In this method the pattern points are connected by a tree structure, for which the sum of the distances between consecutive points in the tree is a minimum,

TABLE III

RESULTS OF HIERARCHICAL CLUSTERING

Similarity values (s _{pr})				Stationary phases forming the cluster		
0.90	0.93 0.95 0.96					
Cluster	number					
1/2	1/2	1	1	Apiezon J, Apiezon L, Apiezon M, Apiezon N, squalane		
·	ŀ	2	2	SE-30, SE-52, SE-30 polyester NPGA terminated, SE-31, Versilub F-50		
3/7	3/5	3/5	3	Di-2-ethylhexyl adipate, isooctyl decyl adipate, TMP tripelargon- ate, di-2-ethylhexyl sebacate, dioctyl sebacate		
			4	Disodecyl phthalate, dioctyl phthalate, dibutyl tetrachlorophthal- ate. Castorwax		
			5	Dow Corning 550 fluid		
	6/7	6	6	Flexol 8N8 Hallcomid M18 OL Hallcomid M18		
	0,1	7	7	Phyropic L81 UCON LB-1715		
8/12	8/9	8/9	8	Pluronic I 42 Pluronic I 72 Poly-tergent I-300		
0,12	0,2	0, 5	õ	Phyronic P65 Territal NPX Phyronic LAA LICON 50 HB-2000		
			,	Oranite NIW Pluranic I 63 Pluranic P84 Pluranic P85 Ethofat		
				60-25 Pluronic I 61 sucrose acetate isobutyrate tricresyl phos-		
				nhate		
	10/12	10/11	10	Bis(2 ethowyethyl) phthelate Neopentyl glucol adjacte terminet		
	10/12	10/11	10	ed. Pluronic F77. Pluronic P46		
			11	Igenal CO 880, Triton X-305, Pluronic F68, Pluronic F88, neo-		
				nentyl glycol adinate		
		12	12	Diethylene glycol sebacate, ethylene glycol sebacate		
13/14	13/14	13/14	13	Polyphenyl ether. 5 rings		
,	,	,- :	14	Polyphenyl ether, 6 rings		
15	15	15	15	Dow Corning FS 1265 fluid		
16	16	16	16	Sorbitol		
17/21	17/19	17/18	17	Diethylene glycol adinate, ethylene glycol adinate		
	,	,	18	Sucrose octaacetate		
		19	19	Carbowax 300 Carbowax 400		
	20	20	20	Hyprose SP 80		
	21	21	21	XF 1150		
22/26	22/24	22/23	22	Carbowax 4000 Carbowax 6000 Carbowax 20M Carbowax		
<i></i> , <i></i>		22,25		1000 Carbowax 1540		
			23	Kroniflex THFP		
		24	24	Neopentyl glycol succinate		
	25	25	25	Carbowax 600		
	26	26	26	Quadrol		
27	27	27	27	Zonyl E-7		
28	28	28	28	Diethylene glycol succinate		
29	29	29	29	Triethylene glycol succinate		
30	30	30	30	Diglycerol		

and closed loops in the connections are not allowed. This minimum spanning tree can then be split into clusters by an algorithm, which considers the distance of the adjacent points. This distance is defined as the Euclidian distance. There are three parameter values, which influence the pruning. These parameters describe the number of points included in the cutting decision, the limit for the variance of the distances and a normalization factor. Such a minimum spanning tree is shown in Fig. 3. The point positions of the stationary phases are calculated by the non-linear mapping method²². The points are projected from the 158-dimensional space to the 2-dimensional space, so that their inter-point distances represent reality as much as possible. The resulting clusters with the corresponding pruning parameters are given in Table IV.

Stationary phase selection

Up to this point only the classification of stationary phases into groups with similar retention characteristics has been performed. A simple decision is now to take from each cluster one phase that has favourable chemical properties, *e.g.*, high temperature stability, low viscosity and good reproducibility of the solvent characteristics, and can easily be obtained. It is then possible to define a standard set of stationary liquids that will solve most separation problems and give optimum data for the characterization of unknown solutes. An example of such a set of stationary phases that can be selected with this kind of procedure is shown in Table V. If for a given cluster several phases result as possible selections, then the phase with the minimum distance to the cluster centre should be chosen.

Fig. 3. Result of cluster analysis with the minimum spanning tree method projected to the two-dimensional space.

TABLE IV

COMPARISON OF CLUSTERING WITH DIFFERENT CLASSIFICATION METHODS

Stationary phase		Classification method*						
No.	Name	HC/0.90	HC/0.96	MST-4/1.5/0	MST-3/1.6/0	MST-3/1.2/0		
63	Squalane	1/2	1	1	1/2	1		
2	Apiezon L	1/2	1	2	1/2	2		
3	Apiezon M	1/2	1	2	1/2	2		
4	Apiezon N	1/2	1	2	1/2	2.		
1	Apiezon J	1/2	1	2	1/2	2		
60	SE-31	1/2	2	3	3	3		
73	Versilub F-50	1/2	2	3	3	3		
58	SE-30	1/2	2	3	3	3		
59	SE-30 polyester NPGA terminated	1/2	2	3	3	3		
61	SE-52	1/2	2	3	3	3		
24	Dioctyl sebacate	3/7	3	4/5	4/5	4		
20	Di-2-ethylhexyl sebacate	3/7	3	4/5	4/5	4		
35	Isooctyl decyl adipate	3/7	3	4/5	4/5	4		
19	Di-2-ethylhexyl adipate	3/7	3	4/5	4/5	4		
67	TMP tripelargonate	3/7	3	4/5	4/5	4		
22	Diisodecyl phthalate	3/7	4	4/5	4/5	5		
25	Dow Corning 550 fluid	3/7	5	6	6	6		
23	Dioctyl phthalate	3/7	4	4/5	4/5	5		
15	Dibutyl tetrachlorophthalate	3/7	4	4/5	4/5	5		
14	Castorwax	3/7	4	4/5	4/5	5		
30	Flexol 8N8	3/7	6	4/5	4/5	5		
32	Hallcomid M18 OL	3/7	6	4/5	4/5	5		
31	Hallcomid M18	3/7	6	4/5	4/5	5		
74	UCON LB-1715	3/7	7	4/5	4/5	5		
49	Pluronic L81	3/7	7	4/5	4/5	5		
48	Pluronic L72	8/12	8	7/10	7/10	7		
44	Pluronic L42	8/12	8	7/10	7/10	7		
56	Poly-tergent J-300	8/12	8	7/10	7/10	7		
52	Pluronic P84	8/12	9	7/10	7/10	7		
53	Pluronic P85	8/12	9	7/10	7/10	7		
27	Ethofat 60-25	8/12	9	7/10	7/10	7		
40	Oronite NIW	8/12	9	7/10	7/10	7		
47	Pluronic L63	8/12	9	7/10	7/10	7		
46	Pluronic L61	8/12	9	7/10	7/10	7		
68	Tricresyl phosphate	8/12	. 9	7/10	7/10	8		
54	Polyphenyl ether, 5 rings	13/14	13	11	11/12	11		
55	Polyphenyl ether, 6 rings	13/14	14	12	11/12	12		
45	Pluronic L44	8/12	9	7/10	7/10	7		
51	Pluronic P65	8/12	9	7/10	7/10	7		
72	UCON 50 HB-2000	8/12	9	7/10	7/10	7		
66	Tergitol NPX	8/12	9	7/10	7/10	7		
64	Sucrose acetate isobutyrate	8/12	9	7/10	7/10	9		
50	Pluronic P46	8/12	10	7/10	7/10	10		
38	Neopentyl glycol adipate terminated	8/12	10	7/10	7/10	10		
5	Bis(2-ethoxyethyl) phthalate	8/12	10	7/10	7/10	10		
26	Dow Corning FS 1265 fluid	15	15	13	13	15		
42	Pluronic F77	8/12	10	7/10	7/10	10		
37	Neopentyl glycol adipate	8/12	11	7/10	//10	10		

TABLE IV (continued)

Stationary phase		Classifica	Classification method*					
No.	Name	HC/0.90	HC/0.96	MST-4/1.5/0	MST-3/1.6/0	MST-3/1.2/0		
17	Diethylene glycol sebacate	8/12	12	14	14/15	14		
29	Ethylene glycol sebacate	8/12	12	15	14/15	15		
43	Pluronic F88	8/12	11	7/10	7/10	10		
41	Pluronic F68	8/12	11	7/10	7/10	10		
62	Sorbitol	16	16	16	16	16		
34	Igepal CO 880	8/12	11	7/10	7/10	10		
70	Triton X-305	8/12	11	7/10	7/10	10		
39	Neopentyl glycol succinate	22/26	24	17	17	17		
13	Carbowax 20M	22/26	22	18/21	18/22	18		
12	Carbowax 6000	22/26	22	18/21	18/22	18		
11	Carbowax 4000	22/26	22	18/21	18/22	18		
36	Kroniflex THFP	22/26	23	18/21	21	21		
10	Carbowax 1540	22/26	22	18/21	18/22	18		
9	Carbowax 1000	22/26	22	18/21	18/22	18		
8	Carbowax 600	22/26	25	18/21	18/22	18		
57	Ouadrol	22/26	26	18/21	18/22	19		
7	Carbowax 400	17/21	19	18/21	18/22	18		
6	Carbowax 300	17/21	19	18/21	18/22	18		
33	Hyprose SP 80	17/21	20	18/21	18/22	18		
21	Diglycerol	30	30	24	24	24		
69	Triethylene glycol succinate	29	29	22	18/22	22		
18	Diethylene glycol succinate	28	28	25	25	25		
16	Diethylene glycol adipate	17/21	17	18/21	18/22	18		
28	Ethylene glycol adipate	17/21	17	18/21	18/22	18		
65	Sucrose octaacetate	17/21	17	18/21	18/22	18		
74	XF 1150	17/21	21	18/21	18/22	20		
75	Zonyl E-7	27	27	23	23	23		

* HC = Hierarchical clustering; MST = minimum spanning tree.

TABLE V

SELECTED STATIONARY PHASES

Stationary phase	Selection procedure*						
	HC/0.90	HC/0.96	MST-4/1.5/0	MST-3/1.6/0	MST-3/1.2/0		
	Cluster number						
Apiezon L	1/2	1	2	1/2	2		
SE-30	1/2	2	3	3	3		
Carbowax 400	17/21	19	18/21	18/22	18		
Carbowax 20M	22/26	22	18/21	18/22	18		
Diethylene glycol succinate	28	28	25	25	25		
Polyphenyl ether, 6 rings	13/14	14	12	11/12	12		
Tricresyl phosphate	8/12	9	7/10	7/10	8		
Ucon 50 HB-2000	8/12	9	7/10	7/10	7		
Di-2-ethylhexyl sebacate	3/7	3	4/5	4/5	4		
Diisodecyl phthalate	3/7	4	4/5	4/5	5		

* HC = Hierarchical clustering; MST = minimum spanning tree.

TABLE VI

RELATIONSHIP BETWEEN CLUSTERING AND MEASURE OF SOLVENT POLARITY

Stationary phase		Cluster No	Solvent polarity measure			
No.	Name	- 140.	Euclidian distance	Distance in MST	Mean retention index	McRey- nolds constant
63	Squalane	1	0	0	717.3	0
2	Apiezon L	1	1.17	1.17	720.1	42
3	Apiezon M	1	1.26	1.66	725.2	69
4	Apiezon N	1	1.37	1.89	726.6	74
1	Apiezon J	1	1.36	2.09	726.3	76
60	SE-31	2	2.53	4.18	743.1	109
73	Versilub F-50	2	2.90	4.71	746.4	126
58	SE-30	2	3.74	5.79	758.5	192
59	SE-30 polyester NPGA terminated	2	3.48	6.40	756.5	197
51	SE-52	2	4.08	6.38	761.3	200
24	Dioctyl sebacate	3	7.85	10.57	807.8	494
20	Di-2-ethylhexyl sebacate	3	7.86	10.70	808.0	498
35	Isooctyl decyl adinate	3	8.44	11 23	814 5	527
9	Di-2-ethylhexyl adipate	3	8 81	11 64	818 7	551
57	TMP tripelargonate	3	8.87	12.16	819.5	560
22	Diisodecyl phthalate	4	9.93	13.58	830 3	594
25	Dow Corning 550 fluid	5	8 64	15.55	811.0	470
23	Dioctyl nhthalate	4	10 74	14 41	830 3	630
5	Dibutyl tetrachlorophthalate	4	11.06	15 58	841 3	673
4	Castorwax	4	10.98	15.98	844 3	716
0	Flexol 8N8	6	12 59	17.90	867 3	758
32	Hallcomid M18 OL	ő	12.55	19.43	861 7	785
51	Hallcomid M18	6	10.97	21.20	842.6	691
1	UCON LB-1715	ž	13.86	19.65	877 1	857
10	Pluronic I 81	7	15.00	21.05	801 5	0/0
8	Pluronic L72	8	17.51	21.05	Q18 7	1080
44	Pluronic I 42	8	17 07	23.02	024 3	1108
56	Poly-tergent I-300	8	18 36	25 14	020.0	1147
;2	Pluronic P84	9	19.23	25.14	038.8	1202
3	Pluronic P85	ģ	19.88	26.95	946 2	1236
7	Fthofat 60-25	á	19.86	20.95	946.0	1230
., ທ	Oronite NIW	á	10.88	27.80	045.8	1230
7	Pluronic I 63	9	19.88	27.02	944.5	1107
6	Pluropic I 61	ó	20.22	20.51	947.0	1109
8	Tricresyl phosphate	ó	19.00	30.32	033.2	1130
4	Polynhenyl ether 5 rings	13	16 37	33.98	897 4	960
5	Polyphenyl ether, 6 rings	14	16.75	36.49	898.8	989
5	Pluronic L44	9	20.45	28.54	952.5	1262
1	Pluronic P65	9	20.89	29.12	957.5	1274
2	UCON 50 HB-2000	9	20.76	29.71	955.4	1269
6	Tergitol NPX	9	20.79	29.65	956.2	1290
4	Sucrose acetate isobutyrate	9	20.83	31.24	953.9	1250
0	Pluronic P46	10	22.66	30.94	977.9	1398
8	Neopentyl glycol adipate terminated	10	22.60	32.42	974.9	1398
5	Bis(2-ethoxyethyl) phthalate	10	22.84	33.86	975.6	1334
6	Dow Corning FS 1265 fluid	15	22.38	40.10	950.0	1110

CHARACTERIZATION OF STATIONARY PHASES FOR GLC

Stationary phase		Cluster No.	Solvent polarity measure			
No.	Name		Euclidian distance	Distance in MST	Mean retention index	McRey- nolds constant
42	Pluronic F77	10	24.03	32.40	993.1	1465
37	Neopentyl glycol adipate	11	24.70	33.94	999 .0	1526
17	Diethylene glycol sebacate	12	25.36	36.38	1006	1571
29	Ethylene glycol sebacate	12	23.29	38.59	982.2	1444
43	Pluronic F88	11	25.31	33.90	1008	1573
41	Pluronic F68	11	25.27	34.08	1007	1571
62	Sorbitol	16	27.60	42.06	1031	1925
34	Igepal CO 880	11	25.91	34.71	1014	1597
70	Triton X-305	11	26.17	35.28	1017	1616
39	Neopentyl glycol succinate	24	28.69	38.28	1044	1756
13	Carbowax 20M	22	30.70	40.94	1069	1893
12	Carbowax 6000	22	30.95	41.54	1071	1907
11	Carbowax 4000	22	31.37	42.03	1076	1939
36	Kroniflex THFP	23	30.96	44.30	1073	1921
10	Carbowax 1540	22	32.23	43.08	1087	1996
9	Carbowax 1000	22	33.23	44.14	1098	2058
8	Carbowax 600	25	34.80	45.88	1117	2177
57	Quadrol	26	34.26	48.88	1109	2122
7	Carbowax 400	19	37.41	48.57	1146	2325
6	Carbowax 300	19	38.71	49.94	1161	2419
33	Hyprose SP 80	20	41.19	53.03	1189	2599
21	Diglycerol	30	46.37	61.95	1249	3111
69	Triethylene glycol succinate	29	45.65	59.36	1234	2818
18	Diethylene glycol succinate	28	54.17	68.36	1324	3261
16	Diethylene glycol adipate	17	38.42	51.40	1153	2372
28	Ethylene glycol adipate	17	38.63	52.80	1154	2364
65	Sucrose octaacetate	18	37.96	53.83	1146	2265
74	XF 1150	21	35.04	57.75	1112	2094
75	Zonyl E-7	27	31.62	64.60	1055	1673

TABLE VI (continued)

TABLE VII

QUALITY OF LINEAR REGRESSION

Polarity measure	For 10 selected	compounds	For maximum number of selected compounds			
	Remaining variance (%)	Correlation coefficient	Max. number of compounds selected	Remaining variance (%)	Correlation coefficient	
McReynolds constant (MR)	0.187	1.0000	29	0.082	1.0000	
Euclidian distance (ED)	1.180	0.9997	26	0.654	0.9999	
Mean value (MI)	0.099	1.0000	30	0.033	1.0000	
Distance along MST (MST)	5.264	0.9939	28	3.168	0.9979	

Solvent polarity and feature reduction

All results reported so far were obtained from the complete data set of 158 solutes. It can be shown, however, that the same classification results if the data set is reduced to a much smaller number of solutes. This feature reduction process needs a ranking criterion that describes the retention characteristics of a solvent.

Different quantitative measures of the so-called solvent 'polarity' have been suggested^{4,5,8,12,15} and a comparison of these methods has been made²³. In all these approaches the data set of McReynolds³ was used.

In this work known and new chromatographic solvent polarity characteristics were compared by means of regression analysis. In this approach the solvent polarity is defined by a linear combination of the retention indices of a number of representative solutes. These solutes are selected by the regression algorithm. In terms of pattern recognition, the solvent polarity is a continuous property, because there are no discrete categories of solvent polarities.

The measures of solvent polarity that will be compared are the following:

(1) The polarity constant (MR), defined by McReynolds³. Five of the ten solutes used originally for the calculation are included in the data set used in our work. The calculation of the McReynolds constant is carried out with these five solutes: (2-methyl-2-pentanol, 1,4-dioxane, benzene, 2-pentanone, butanol).

(2) The euclidian distance (ED) of the selected phase relative to the most nonpolar stationary phase, *i.e.*, squalane.

(3) The mean of the retention indices (MI) of all key solutes.

(4) The length obtained by the traversal of the minimum spanning tree (MST).

The polarity values of all phases according to these definitions are shown in Table VI.

The calculation leading to the selection of representative solutes is carried out in a stepwise linear regression mode. Linear means that only linear terms are included in the model; stepwise means that only one additional solute is included in or excluded from each calculation step. The inclusion or exclusion of a solute is decided according to the significance level of this solute in the change of the variance of the error (*F*test). The results are given in Table VII. As different numbers of solutes were used

TABLE VIII

SELECTION OF TEN SOLUTES FOR THE CLASSIFICATION OF SOLVENTS (FEATURE SE-LECTION)

Selection criterion	Solutes selected
McReynolds constant	3-Methyl-3-pentanol, methacrolein, 1,4-dioxane, 2-ethyl-1-butanol, ben- zene, 1,4-butylene glycol formal, 2-pentanone, butanol, methanol, toluene
Euclidian distance	Propyl acrylate, 1,3-propylene glycol formal, 1,3-butylene glycol formal, pentyl butyrate, 2-hexanol, tetrahydrofuran, 3-pentyl formate, chloroform, cyclohexyl acetate, propyl formate
Mean retention index	Methyl acrylate, cyclopentanone, 2-hexanol, isopropyl ethyl formal, 2,4- pentandione, 2,2-dimethyl-1-butanol, pentyl butyrate, 2-buten-1-ol, hepta- nal, 1,3,5-trioxepane
Distance along MST	2-Butanone, 1,3,5-trioxepane, butyl isobutyrate, diethyl propylal, 3-pentyl acetate, <i>tert.</i> -butyl acetate, 2,2-dimethylpropionaldehyde, 3,3-dimethyl-2-butanone, acrolein diethyl acetal, isobutyl isobutyrate

in the calculation of the different solvent polarity measures, all calculations were stopped when ten solutes had been selected. These ten most selected solutes are listed in Table VIII. It can be seen that the simplest criterion for the solvent polarity, the average retention index, gives the best results.

REFERENCES

- 1 L. Rohrschneider, J. Chromatogr., 22 (1966) 23-28.
- 2 L. Rohrschneider, Anal. Chem., 45 (1966) 1241-1247.
- 3 W. O. McReynolds, J. Chromatogr. Sci., 8 (1970) 685-691.
- 4 J. J. Leary, J. B. Justice, S. Tsuge, S. R. Lowry and T. L. Isenhour, J. Chromatogr. Sci., 11 (1973) 201-206.
- 5 S. R. Lowry, S. Tsuge, J. J. Leary and T. L. Isenhour, J. Chromatogr. Sci., 12 (1974) 124-127.
- 6 J. K. Haken, M. S. Wainwright and N. Do Phuong, J. Chromatogr., 117 (1976) 23-28.
- 7 D. L. Massart, P. Lenders and M. Lauwereys, J. Chromatogr. Sci., 12 (1974) 617-625.
- 8 A. Eskes, F. Dupuis, A. Dijkstra, H. De Clercq and D. L. Massart, Anal. Chem., 47 (1975) 2168-2174.
- 9 H. De Clercq, M. Despontin, L. Kaufman and D. L. Massart, J. Chromatogr., 122 (1976) 535-551.
- 10 D. L. Massart and H. L. O. De Clercq, Advan. Chromatogr., 16 (1978) 75-111.
- 11 J. O. De Beer and A. M. Heyndrickx, J. Chromatogr., 235 (1982) 337-349.
- 12 S. Wold, J. Chromatogr. Sci., 13 (1975) 525-532.
- 13 R. N. Carey, S. Wold and J. O. Westgard, Anal. Chem., 47 (1975) 1824-1829.
- 14 D. H. McCloskey and S. J. Hawkes, J. Chromatogr. Sci., 13 (1975) 1-5.
- 15 S. R. Lowry, G. L. Ritter, H. B. Woodruff and T. L. Isenhour, J. Chromatogr. Sci., 14 (1976) 126-131.
- 16 P. H. Weiner and J. F. Parcher, J. Chromatogr. Sci., 10 (1972) 612-615.
- 17 G. Dahlmann, H. J. K. Köser and H. H. Oelert, J. Chromatogr. Sci., 17 (1979) 307-313.
- 18 J. K. Haken and D. Srisukh, J. Chromatogr., 199 (1980) 199-208.
- 19 W. O. McReynolds, Gas Chromatographic Retention Data, Preston Technical Abstracts Company, Evanston, IL, 1966.
- 20 S. R. Heller and R. Potenzone, Jr., Trends Anal. Chem., 2 (1983) 218-221.
- 21 D. L. Duewer, A. M. Harper, A. M. Koskinen, J. L. Fasching and B. R. Kowalski, ARTHUR, Version 3-7-77 Infomatrix, Seattle, WA.
- 22 B. R. Kowalski and C. F. Bender, J. Amer. Chem. Soc., 95 (1973) 686-693.
- 23 S. R. Lowry, H. B. Woodruff and T. L. Isenhour, J. Chromatogr. Sci., 14 (1976) 129-131.